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Abstract

Bivalve larvae are small (50–400 lm) and difficult to identify using standard microscopy, thus limiting

inferences from samples collected in the field. With the advent of ShellBi, an image analysis technique, accu-

rate identification of bivalve larvae is now possible but rapid image acquisition and processing remains a

challenge. The objectives of this research were to (1) develop a benchtop automated image acquisition system

for use with ShellBi, (2) evaluate the system, and (3) create a protocol that would maintain high classification

accuracies for larvae of the eastern oyster, Crassostrea virginica. The automated system decreased image acqui-

sition time from 2–13 h to 46 min per slide and resulted in the highest classification accuracies at the lowest

tested magnification (7X) and shortest image acquisition time (46 min). Quality control tests indicated that

classification accuracies were sensitive to camera and light source settings and that measuring changes in

light source and color channel intensities over time was an important part of quality control during routine

operations. Validation experiments indicated that under proper settings, automated image acquisition cou-

pled with ShellBi could rapidly classify C. virginica larvae with high accuracies (80–93%). Results suggest that

this automated image acquisition system coupled with ShellBi can be used to rapidly image plankton samples

and classify C. virginica larvae allowing for expanded capability to understand bivalve larval ecology in the

field. Additionally, the automated system has application for rapidly imaging other planktonic organisms at

high magnification.

Ecologically and commercially important shellfish can

provide important coastal habitat (Seitz et al. 2014), influ-

ence nutrient cycles (Newell 2004; Kellogg et al. 2013), and

support local fishing communities (Mann 2001; Hall-Arber

et al. 2001). These shellfish, including the eastern oyster

Crassostrea virginica, often have a transient planktonic larval

stage and sessile juvenile and adult phases, (Kennedy 1996;

Eversole 2001; Beninger and Le Pennec 2006). However, little

is known about the planktonic stage of larvae although it

influences the recruitment patterns of a population (Gaines

and Roughgarden 1985; Kennedy 1996). Discerning patterns

in abundance and changes in distributions of planktonic

bivalve larvae requires a large number of samples over space

and time (Steele 1989; Wiens 1989). Recently, semi-

automated plankton imaging techniques have been devel-

oped to expand the spatial and temporal scales of sampling

(Grosjean et al. 2004; Benfield et al. 2007; MacLeod et al.

2010; Bachiller et al. 2012; Thompson et al. 2012), with both

in situ (e.g., Video Plankton Recorder (Davis et al. 1996),

ISIIS (Cowen and Guigand 2008)) and benchtop (e.g., Zoo-

scan (Gorsky et al. 2010) approaches. However, these techni-

ques do not identify bivalve larvae to the species level. One

semi-automated imaging technique called ShellBi uses

machine learning to identify images of bivalve larvae taken

under polarized light (Tiwari and Gallager 2003; Thompson

et al. 2012; Goodwin et al. 2014). Manual acquisition of

images for use with ShellBi can take up to 12 h per sample

(Thompson et al. 2012; Goodwin et al. 2014). More rapid

benchtop approaches for image acquisition of plankton are

needed to decrease processing time for samples collected

from turbid waters like estuaries where it is difficult to cap-

ture images in situ due to the attenuation and scatter of

light (Guo et al. 2015). The objective of this research was to

develop and test such an approach.

Traditional methods of identifying bivalve larvae focus on

hinge structures or other morphological cues (Chanley and

Andrews 1971; Lutz et al. 1982). These methods often

require experts, intensive labor, and are subject to a degree

of individual subjectivity (Garland and Zimmer 2002). More

rapid molecular techniques have been developed (Hare et al.

2000; Garland and Zimmer 2002; Larsen et al. 2005) but

those techniques can be susceptible to contamination and
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misidentification (Larsen et al. 2005; Thompson et al. 2012).

More pros and cons of various bivalve identification meth-

ods are reviewed in Garland and Zimmer (2002) and Hen-

driks et al. (2005).

A more recently developed method for identifying bivalve

larvae is ShellBi. ShellBi utilizes the color and texture-based

features extracted from digital images of bivalve larvae taken

under polarized light (Gallager and Tiwari 2008). This meth-

od uses an image library, or training set, to classify

“unknown” images (for more detail see Thompson et al.

2012). The images of the bivalve larvae are classified using

pattern recognition software (Gallager and Tiwari 2008).

ShellBi was validated by applying DNA and visual classifica-

tion methods to bivalve species in Cape Cod, yielding high

(98%) classification accuracies for hatchery reared larvae but

lower accuracies (63–88%) for field samples (Thompson et al.

2012). Goodwin et al. (2014) showed that classification accu-

racies could be increased (by up to 20%) when training set

images included larvae reared under similar environmental

conditions to those being classified. Goodwin et al. (2014)

also demonstrated that ShellBi was effective for distinguish-

ing different species of bivalves than those that Thompson

et al. (2012) tested, suggesting that this method has broad

applicability in estuarine and marine systems.

Although ShellBi offers a quantitative way to identify and

measure bivalve larvae, image acquisition speed has been

limited to �100 images h21 (Goodwin et al. 2014) while cap-

turing images of larvae under a microscope by manually

moving the stage or by using a joy-stick-assisted motorized

stage. Both techniques necessitate substantial time invest-

ment of a trained technician especially if target organisms

are rare and subsampling is not possible. Automating image

acquisition would greatly enhance sample processing speed

and enable greater spatial and temporal coverage during field

surveys for bivalve larvae. In addition, increased speed of

acquisition of high resolution images at high magnification

has applications for enhancing surveys of other types of

plankton such as copepods and fish eggs.

Another challenge with automated image acquisition is

identifying and cropping (selecting) regions of interest (ROI).

For ShellBI, the ROI is the shell of a bivalve larva. Currently,

cropping for ShellBi is done manually by clicking with a

mouse around the ROI. This is necessary because automated

ROI detection software is not able to differentiate bivalve lar-

vae from the other birefringent materials like suspended sed-

iment in samples from turbid estuaries.

The main objective of this research was to create an auto-

mated image acquisition system which would enable faster

image acquisition and improved cropping while maintaining

a standard of quality control which enabled consistent and

high-accuracy classification of C. virginica larvae. Custom

software was created that enabled a digital camera and auto-

mated stage to image the contents of a Sedgwick-Rafter slide

automatically and ROI detection software was improved. The

system was tested to determine how magnification, software

settings, and other factors affected the classification accuracy

of bivalve larvae. Quality control measures were developed

to ensure that the image acquisition system captured images

with consistent alignment, brightness, and color. Methods

for sample preparation and storage were also developed (and

described in the “Assessment” section) to enhance sample

processing time and ensure preservation of larval shells.

Materials and procedures

This section describes the automated image acquisition

system which was combined with ShellBi software to create

a rapid system for identifying bivalve larvae. It also includes

procedures which were developed to maintain image quality

and classification accuracies and to prepare field samples for

use with the automated imaging system.

Hardware

An automated image acquisition system was developed that

integrated hardware and software components to improve

image capture, image processing, and overall sample processing

speeds for imaging bivalve larvae. The hardware consisted of an

automated stage, digital camera, microscope, and a desktop

computer (Fig. 1; Table 1). The automated stage, a Semprex

KPL53 Servo motor-controlled stage, was configured with a

micro-plate holder that fit Sedgewick-Rafter slides and an alumi-

num baseplate that was clamped to the benchtop to reduce

vibration. An Omax M837PL trinocular inverted polarizing

microscope with factory stage removed was bolted to the alumi-

num baseplate. The microscope was fitted with a polarizer (slides

into place over the light source), a condenser (which rotates),

and a full wave compensation (k) plate (slides into place). The

microscope was fitted with an ocular of 5X and objective lenses

of 4, 10, and 20X. The factory stage was removed and therefore

the exact magnification could not be calculated by multiplying

the ocular by the objective. Hence, magnification was calculated

by imaging an American Optical 2-mm reticle and measuring a

100 lm increment on it. The image of the100 lm increment

was converted to pixels using ImageJ software and then the cam-

era conversion factor of 3.45 lm/pixel (specific to the camera

used) was applied to calculate actual magnifications of 7, 21,

and 41X for objective lenses 4, 10, and 20X, respectively.

An Infinity model 2-3C eight-megapixel digital micro-

scope camera was fitted onto the microscope using a digital

camera extension piece (Fig. 1A). The camera was further

secured by two metal braces that screwed into the side of the

camera and rested tightly at the head of the microscope (Fig.

1B). The braces were secured in place to help maintain cam-

era alignment. Other metal braces were installed at each side

of the base of the microscope so that the microscope could

be secured to the aluminum baseplate of the automated

stage (Fig. 1C). The digital camera and automated stage

motor controller were connected to a windows PC desktop

computer.
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The Semprex KPL53 Servo motor-controlled stage was

equipped with x, y, and z directions. The z direction is the

vertical height the stage can move toward or away from the

objective lenses. The height of the stage was adjusted manu-

ally so that 9-d old C. virginica larvae were in focus, which

resulted in younger (2–4 d) and older (> 14 d old) larvae not

being in sharp focus. Some Sedgewick Rafter slides did not

provide as level a surface as others when placed in the well

plate holder of the automated stage. In order to select the

best Sedgwick rafter slides, we measured the vertical height

at which D-stage larvae were in focus at the four corners and

center of several Sedgewick Rafter slides, and chose to use

the slides with the least change in height across the slide for

processing samples (< 0.1 mm difference). We did not use

the automatic focus in the z direction (which is available

with the automated stage) because setting the autofocus

could result in additional processing time (up to 30 s) per

bivalve and sometimes there were >1000 bivalves in samples

from the field.

Software

Custom software was developed to enable the computer

to control both the camera and the automated stage so that

images could be captured rapidly. The custom software

called on libraries from both the automated stage software

(Semprex) and the camera software (Software Development

Kit (SDK) from Lumenera). The custom software was written

in Microsoft Visual Basic .NET (VB.NET). The custom soft-

ware (available upon request to the corresponding author)

made calls to both the stage controller and camera. First the

custom software signaled the controller to move the stage to

a “home” position. After the home position was reached, the

stage was then signaled to move in a series of steps down

the length of the Sedgwick Rafter slide and the camera was

programmed to capture images at designated points.

Between each step the program executed a pause (referred to

as settling time) to wait for any vibrations to dampen and

then the program called the camera to capture an image.

This process was repeated until an entire length of the Sedg-

wick Rafter cell was imaged. The stage then was programmed

to move over the length of one image and capture images in

a similar stepwise fashion moving in the opposite direction.

This serpentine pattern was repeated until the entire area of

the slide was imaged. A binning factor was implemented to

speed up image acquisition so that a 4 3 4 pixel square on

the camera sensor was summed to become 1 pixel in the

final image. This resulted in smaller, brighter images allow-

ing for shorter exposures and less time between successive

image captures. Images were saved from the camera in a raw

file format to reduce acquisition times by shifting conversion

of raw files from the camera to the computer. After imaging

the Sedgewick-Rafter slide was complete, the raw image files

on the computer were converted into BMP images using soft-

ware written in visual basic (custom software available upon

Fig. 1. (A) Automated imaging acquisition system composed of (1)

Infinity 2-3C digital microscope camera with metal braces on each side,
(2) Semprex automated stage motor, (3) Semprex automated stage

with Sedgwick Rafter slide in well plate holder, (4) stage motor control-
ler hub, (5) Omax inverted polarizing microscope with metal braces on
each side of the base, (6) four metal braces (two on each side of the

microscope), and (7) aluminum baseplate clamped to benchtop. Insets
show (B) a side view of one of the aluminum L-channel braces (25.1 3

1.8 cm) that keep the camera and microscope aligned and (C) a close
up of one of the aluminum L-channel braces (7.9 3 2.5 cm) that keep
the microscope aligned with the baseplate of the automated stage.

Table 1. The components, company, model, and price (United States dollar) of the automated image acquisition system in 2012.
The automated stage and Semprex software is available with several options and the price here includes all components needed to
run the stage in the x, y, and z planes. The ShellBi software is available and sold with hardware at coastaloceanvision.com.

Component Company Model Price

Digital camera with software Lumenera/Infinity 2-3C $2,300

Automated stage with software Semprex AMICron 3.2 software w/KPL53 stage $11,663.9

ShellBi software

Trinocular polarizing microscope microscope.net M837PL $1,299.99

SDK Lumenera software Lumenara/Infinity SDK 2011 $695

Desktop computer Dell Optiplex 7010 $917.73

Sedgwick Rafter gridded/ungridded Cole-Parmer 1801-A10/G20 $135/48 each

Total $17,059.62
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request to the corresponding author). This post-acquisition

image processing was implemented to reduce the time need-

ed to capture images and thereby speed up the image acqui-

sition process. After post-processing, the images were ready

to be cropped, measured, and classified with the ShellBi soft-

ware package. The ShellBi software is available with Continu-

ous Particle Imaging and Classification system (CPICS) at

coastaloceanvision.com.

Procedures

Recommended steps and procedures were created to opti-

mize the automated image acquisition system and ensure

quality control. These steps were (1) standardize microscope

and camera settings, (2) maintain alignment, (3) create train-

ing set, (4) check color channel intensity, and (5) classify a

standard. These steps may be modified or generalized for

applications of this technology to other species of interest

(Fig. 2). For example, the classification of a standard may be

conducted using other software programs for different spe-

cies. In addition to these procedures, recommendations for

how to prepare and store field samples for image acquisition

were developed.

Standardize microscope and camera settings

Optimal microscope and camera settings were determined

and then remained fixed so that consistent images were tak-

en for training sets and unknown specimens. For the micro-

scope, the objective lens, the light source, and the rotation

of the condenser were set. The rotation of the condenser was

set by sliding the polarizer into place, focusing on a bivalve

shell under full light extinction, and then rotating the con-

denser until a black cross formed on the shell (see Tiwari

and Gallager 2003). Once full extinction was reached, a

lambda (k) plate was then inserted and a magenta back-

ground became apparent. The 4X objective lens was used

(see “Assessment” section for explanation). The light intensi-

ty level was controlled using a dial near the base of the

microscope. A white line was marked on the base of the

scope just above the dial position to ensure the dial did not

move from this position. The camera settings were originally

chosen in the Infinity Analyze software program which

allowed each setting to be named and saved within the pro-

gram. The settings were then programmed into the custom

software (available with the custom software from the corre-

sponding author) where they were saved.

Maintain alignment

In order to ensure that a Sedgewick Rafter slide was

entirely imaged (and therefor all organisms on the slide

would be imaged), an alignment protocol was established

after the initial alignment of the system was complete (see

Semprex manual for initial set up). A Sedgewick Rafter slide

with grid lines was used. After an entire gridded Sedgwick

Rafter slide was imaged (n 5 1920 images), the images were

stitched together in a mosaic MATLAB (R2012b) software

available at: http://northweb.hpl.umces.edu/open_source_

code/open_source_code.htm. The mosaic was examined by

zooming in on the grid line sections of each slide and

checked to (1) ensure that the entire area of the Sedgewick

Rafter slide was captured and (2) the grid lines on the slide

lined up across the image. If the entire slide was not imaged,

the “home” position was reprogrammed. If the grid lines did

not line up, the camera was rotated slightly until proper grid

alignment was achieved. This alignment procedure was

repeated until the system was aligned (usually no more than

5 times). Based on 52 observations over 100 d, we found

that the alignment protocol should be conducted after imag-

ing every 40 samples (a weekly period in our laboratory).

Create training sets

A training set is a group of known images used to classify

other images (e.g., Thompson et al. 2012; Demir et al. 2013;

Goodwin et al. 2014). Once optimal settings were chosen

and saved, training sets of images of specimens of different

species of bivalve larvae were created so that they could be

used for classifying unknown specimens and for use in quali-

ty control of the automated image acquisition system. The

training sets were created from laboratory reared specimen

(see “Assessment” section for information on the specimen

library used to create training sets). At least 200 images were

used in each category of all training sets based on Thompson

et al. (2012).

Check color channel intensity

ShellBi depends on consistent software and hardware set-

tings to maintain stable accuracies for bivalve larvae identifi-

cation (Thompson et al. 2012) although some minor

fluctuation is tolerable (see Goodwin et al. 2014). Changes

in light intensity, specifically color channel intensity, can

alter the color of light detected on larval shells as well as the

background color of the images. We found that color chan-

nel intensity fluctuated over the course of a day and over

the lifespan of the light bulb in the Omax microscope.

Fig. 2. Flow diagram of system quality assurance and processing steps:

(1) standardize the camera and microscope settings for the project
(check weekly), (2) align the camera so no areas of the slide are missed
(check weekly), (3) measure the color channel intensity (daily), (4) ana-

lyze a standard (weekly), and (5) image samples after steps 1-4 are
completed.
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Therefore a protocol was developed to measure light intensi-

ty of individual RGB color channels (red, green, blue) from a

bitmap image using code developed in MATLAB (version

R2012b). First an acceptable range in variation of color chan-

nel intensity was determined, and then a protocol was estab-

lished to maintain color channel intensities within that

range. Color channel intensities were reported as binned val-

ues out of a range of 0–255 with 0 being no light and 255

being maximum possible detection. This range was unit-less

and was determined by the 8-bit bit depth of each color

channel value that made up the output file (in this case a

bitmap image).

An “acceptable” light intensity range was determined by

measuring the daily variation in color channel intensities

and then testing whether the maximum and minimum of

these values affected ShellBi classification accuracies for our

target organism, C. virginica. To measure daily variation in

color channel intensities, “blanks” were taken by imaging

the light from the light source without a Sedgewick Rafter or

any other slide in the stage. Five of the blank images were

then analyzed in MATLAB to calculate the color channel

intensity of red, blue, green, and overall average values avail-

able at: http://northweb.hpl.umces.edu/open_source_code/

open_source_code.htm. This process was repeated hourly

over the course of 6 d to determine the variability in color

channel intensity. The range in red, green, blue, and average

color channel intensities was 97.0–115.5, 14.0–15.83, 19.9–

23.3, and 43.7–51.6, respectively. To test whether the maxi-

mum and minimum of these values affected classification

accuracies for C. virginica, a training set was created by cap-

turing and cropping images of C. virginica, Ischadium recur-

vum, and Rangia cuneata (n 5 200 for each species) when

color channel intensity was near the mean of the average

color channel intensities (49.9). These three species include

variation in genera of bivalves (oyster, mussel, clam) and

were selected based on specimens available at the time of

the tests. This “quality control” training set was used to clas-

sify three sets of 50 images of 9-d old C. virginca larvae

which had been captured at the mean, maximum, and mini-

mum of the daily range in color channel intensities and

then cropped. Classification accuracies of C. virginica ranged

from 92% to 100%, indicating that the maximum and mini-

mum in daily color channel intensity fluctuations did not

cause unacceptable decreases in classification accuracies.

Therefore, the range in red, green, blue, and average color

channel intensities reported above was selected to be the

“acceptable” range.

After the acceptable range in color channel intensities was

determined, a protocol was established to ensure images

were captured with color channel intensities in this range.

Five blanks were captured and analyzed three times per day

to ensure color channel intensity values remained within

the acceptable range. If the color channel intensities were

not within the acceptable ranges, the intensity of the light

source was adjusted until they were within the acceptable

range or the bulb was replaced on the microscope.

Repeated classification of a standard

A performance-based test was conducted to ensure quality

control for the automated image acquisition system. Specifi-

cally, 50 images of 9-d-old C. virginica larvae were imaged

once per week, cropped, and then classified using the ShellBi

software with the “quality control” training set (described

above). This helped ensure that high classification accuracies

were maintained over the 3 months that field samples were

being imaged.

Preparing field samples for image acquisition

New protocols were developed for preparing field samples

for imaging bivalve larvae by reducing the number of other

organisms and small sediment particles present in the sam-

ple and by removing tissue of the larvae which inhibits

detection of birefringent patterns in veliger and pediveliger

larvae (see Supporting Information Fig. S.1 for summary

instructions). Samples collected from the Choptank River

were stored in 200 mL jars with 4% formalin seawater solu-

tion buffered with sodium borate. Under a fume hood, a

sample was poured through a 350 lm sieve into a 300 mL

beaker to remove larger particles. The sample in the beaker

was poured through a 44 lm sieve. The 44 lm sieve was

rinsed using 40% bleach and 60% Deionized (DI) water buff-

ered with sodium borate into a centrifuge tube. The sample

was left for 20 min to digest tissue and break apart valve

hinges and then poured through another 44 lm sieve. The

sample was then rinsed from the sieve into a 15 mL centri-

fuge tube using buffered DI water (buffered with sodium

borate) and left for 5 min to settle (the time it took for the

smallest shells to sink to the bottom). The supernatant was

carefully pipetted off until a 2 mL sample volume was left in

the tube. The supernatant was discarded after observing that

no bivalve larvae were present (n 5 270). The remaining sam-

ple was mixed and resuspended within the 2 mL of solution

by pipetting the sample up and down 3–4 times within the

centrifuge tube (in an up and down fashion avoiding circular

motion). Then a 1-mL aliquot was pipetted from the centri-

fuge tube and placed (from left to right) onto the center of a

Sedgewick Rafter slide (non-gridded). A coverslip was careful-

ly placed on top of the Sedgwick Rafter slide and the slide

was then placed in a well plate holder on the automated

stage. The remaining 1-mL aliquot was pipetted onto anoth-

er Sedgewick Rafter slide in the same manner.

Subsamples of the two aliquots were conducted by imag-

ing half of the Sedgwick Rafter slide (lengthwise). Tests per-

formed indicated that the first 1-mL aliquot pipetted onto

the Sedgewick Rafter slide had unequal numbers of larvae

compared with the second aliquot, but that there was no sta-

tistically significant difference in the number of bivalve

shells on the left compared to the right half of each slide

(Students t-test, p 5 0.37, n 5 60). Therefore, half of each slide
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with the first and second 1-mL aliquots was imaged. By

imaging half of each slide in 23 min (including start up

time), 50% of the sample was imaged. Note that the count

of larvae in a plankton sample would be calculated as two

times the number of ROIs (to take into account the 50% sub-

sampling) divided by two (to take into account the fact that

each larva had two shells). Images of known specimens that

were reared to create training sets underwent the same pro-

cedure, except that sieving was not necessary and full slides

(rather than 50%) were imaged.

Sample storage

Sample storage considerations are important for this

method. Although Goodwin et al. (2014) found no differ-

ence in classification accuracy using ShellBi when samples

were preserved in buffered 95% ethanol or buffered 4%

formaldehyde, buffered 4% formaldehyde solution should be

used for long term storage >2 yr because shells of bivalve

larvae stored in buffered 95% ethanol cracked after 2 yr

(Goodwin, Thompson pers. obs.). To prepare samples for

long term storage, the samples should be preserved with 4%

formaldehyde buffered to a pH of 8.0–8.1with sodium borate

(pH 10.1). The pH of the samples should be monitored over

time. O’Meara et al. (2013) found that birefringence is lost

on veliger mussel (Dreissena bugensis) larvae if they are not

stored in basic (pH 7.0–9.0) conditions. However, larval

shells can dissolve when sample pH drops below 8.0 (Good-

win, pers. obs). Therefore, pH should be tested 1 or 2 d after

sample collection, after the first week, after the first month

and then quarterly thereafter. If pH drops near or below 8.0,

buffer should be added to bring pH back up to the 8.0–8.1

ranges, then retested a few days to a week later to ensure

that the pH remains stable.

Assessment

Tests were conducted to evaluate the automated image

acquisition system and improvements to the ShellBi software

in order to attain optimum classification accuracies. Specifi-

cally, magnification and image resolution, color channel

intensity, ROI detection, and camera software settings were

assessed. Finally, two blind validation experiments (Valida-

tion One and Validation Two) were conducted to test classi-

fication accuracies of the automated image acquisition

system.

The shells of bivalve larvae that were used in these tests

were derived from a collection of known specimens of

bivalve larvae that we assembled. Seven bivalve species,

which are found in Choptank River at the same time as our

target species C. virginica, were spawned and reared and

images of their shells, and those of C. virginica, were cap-

tured. The adult bivalves that were collected from the Chop-

tank River and reared in the laboratory consisted of: I.

recurvum (hooked mussel), Mulinia lateralis (dwarf surf clam),

Mytilopsis leucophaeata (dark false mussel), Macoma mitchelli

(matagora macoma clam), R. cuneata (Atlantic rangia clam),

and Tagelus plebeius (razor clam). Larvae of C. virginica (east-

ern oyster) were obtained from the Horn Point Hatchery and

Guekensia demissa (marsh mussel) were obtained from the

Rutgers Aquaculture Innovation Center. Spawning and rear-

ing procedures were consistent with summer conditions in

Choptank River and were explained in detail (see Goodwin

et al. 2014) for all species with the exception G. demissa. The

G. demissa larvae were reared in conditions similar to Dela-

ware Bay at a temperature of 24.98C at a salinity of 22.5 and

fed Isochrysis galbana, Pavlova lutheri, and Chaetoceros calci-

trans. Because the number of specimens available for testing

differed between species and changed over time, some of the

assessment tests were conducted with a subset of the eight

species (see Table 2 for details). Also, multiple bivalve species

were used as target organisms in some tests, in addition to

C. virginica, to better assess the capabilities of the automated

image acquisition system and software.

Magnification and image resolution tests

The objectives of the magnification and image resolution

tests were (1) to choose the lowest magnification that

resulted in high classification accuracies and the fastest

image acquisition time, and (2) to determine how changes

in image resolution within the ShellBi software influenced

classification accuracies. Previous research with the ShellBi

technique was conducted at a magnification of 50X (Thomp-

son et al. 2012; Goodwin et al. 2014). To test a range of mag-

nifications, the automated stage and software was used to

image bivalve larvae on a Sedgewick Rafter slide at three dif-

ferent magnifications: 7, 21, and 41X. It took 46, 120, and

160 min to image a slide at magnifications of 7, 21, and

41X, respectively. Images of bivalve larvae were captured at

each magnification using consistent hardware and software

components, except that objective lenses (4, 10, and 20X)

were changed to create the different magnifications.

Training sets composed of 200 images of four species of

bivalve larvae (C. virginica, I. recurvum, R. cuneata, and M. leu-

cophaeata) (n 5 800 total images) were created and used to

classify “unknown” images of each species (n 5 25 for each

species). These training sets were created for each magnifica-

tion and images of the “unknown” specimens were also cap-

tured at each magnification. Both “unknown” and

“training” sets included images of D-stage and veliger larvae.

In addition to testing the effect of magnification on classi-

fication accuracy, the influence of image resolution within

the ShellBi software was also determined. In the research

performed by Goodwin et al. (2014), the software did not

reduce the resolution of images. The resolution of images

taken at different magnifications was reduced by 40%, 20%,

and 0% and classification tests were performed to determine

the influence of image resolution on classification

accuracies.

Goodwin et al. Automated image acquisition of bivalve larvae

6



Classification accuracies of images captured at different

magnifications and with different image resolutions ranged

from 88% to 100%. Classification accuracy for images taken

under magnification settings of 7X were highest for all four

species (98–100%) regardless of the reduction setting used

(Table 3). There was no change in classification accuracy

when image resolution was reduced at a magnification of 7X

and<1% change in classification accuracy when image reso-

lution was reduced at magnifications of 21X or 41X. Based

on the results of these classification tests, it was concluded

that the lowest magnification setting of 7X yielded highest

(98–100%) accuracies and fastest sample imaging time (46

min) and that reducing image resolution in the software,

within the tested limits, did not affect classification

accuracy.

Color channel intensity

Over a period of 100 d, color channel intensities were

measured and monitored and a standard set of 50 images of

9-d old C. virginica larvae were classified (Fig. 3) as part of

the protocol for maintaining high classification accuracies

(described in the “Procedures” section). Classification accura-

cies were consistent (98–100%) until the color channel

intensity for red, green, and blue dropped. The intensity

drop was due to a faulty light bulb which led to lower classi-

fication accuracy (70%) of the standard unknown set. The

light bulb was replaced and color channel intensity was

restored to acceptable levels, as indicated by classification

tests (98–100%) (Fig. 3). The degradation of a light bulb or

change in a power source over time could also potentially

cause lower light intensities. Based on these observations,

color channel intensity influences the classification accuracy

of ShellBi and should therefore be monitored daily to be

maintained within an acceptable range.

ROI detection

Tests were conducted to assess the ability of the updated

ROI detection software to automate the post processing of

images. Samples (n 5 23) that included oysters (C. virginica),

mussels (G. demissa, I. recurvum), and clams (M. mitchelli, M.

lateralis, M. leucophaeata, R. cuneata, T. plebeius) were imaged

with the automated image acquisition system. The larvae that

were imaged ranged in ages (2–16 d) and lengths (44–330

Table 2. Assessment test information. The table includes the target species of each test, whether classification tests were performed,
and, if so, what species were included in the unknown and training sets.

Test

Target

species

Classifications

performed?

Species in

unknown set

Species in

training set

Magnification and image resolution CV, IR, RC, DF Yes CV, IR, RC, DF CV, IR, RC, DF

Color channel intensity CV Yes CV CV, IR, RC

ROI detection CV, GF, IR, ML,

DF, MM, RC, TP

No N/A N/A

Camera software setting performance CV, IR, RC Yes Cv, IR, Rc CV, IR, RC

Validation One CV Yes CV, GF, IR, ML, DF,

MM, RC, TP

CV, GF, IR, ML, DF,

MM, RC, TP

Validation Two CV Yes CV, GF, IR, ML,

MM, RC, TP

CV, GF, IR, ML, MM,

RC, TP

CV, Crassostrea virginica; IR, Ischadium recurvum; GD, Geukensia demissa; DF, Mytilopsis leucophaeata; ML, Mulinia lateralis; MM, Macoma mitchelli; RC,

Rangia cuneata; TP, Tagelus plebeius; and N/A, not applicable.

Table 3. The percent classification accuracy for four
“unknown” bivalve species when images in training and
“unknown” sets were captured under different microscope mag-
nifications and when image resolution was reduced prior to clas-
sification. Each training set was composed of 200 images of
shells of Crassostrea virginica (CV), Ischadium recurvum (IR), Ran-
gia cuneata (RC), and Mytilopsis leucophaeata (DF)) for a total of
800 images. The training sets were then used to classify 25
images of shells of CV, IR, RC, and DF as “unknowns.” For each
test, the training set images and “unknown” images were cap-
tured under the same magnification and software reduction set-
ting. The different magnifications were applied by changing the
objective lenses on the hardware. Image resolution was reduced
within the ShellBi software.

Test

Percent reduction

in image resolution

(software)

Magnification

(hardware)

Percent accuracy

CV DF IR RC

1 40 7X 98 98 100 100

2 40 21X 97 95 99 100

3 40 41X 94 88 98 96

4 20 7X 98 98 100 100

5 20 21X 96 95 99 100

6 20 41X 94 88 99 96

7 0 7X 98 98 100 100

8 0 21X 97 96 99 100

9 0 41X 94 89 98 95
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lm). Images with birefringence were sorted into folders using

the automated sorting software (MATLAB (R2012b) software

available at: http://northweb.hpl.umces.edu/open_source_

code/open_source_code.htm). Trained technicians counted

the bivalve shells in the folders, after which the automated

ROI detection software was used to enumerate the number of

ROIs in the images. The same procedure was repeated with 30

samples (200 L21 each) that had been collected from the

Choptank River in July of 2012. These samples included clam,

mussel, and oyster larvae of various sizes.

The relationship between counts of bivalve larvae generat-

ed by the automated ROI detection software and counts by

trained technicians was stronger for hatchery-reared speci-

mens (R2 5 0.94, p 5<0.01, n 5 33, JMP version 11.1) than it

was for field collected bivalve larvae (R2 5 0.56, p 5 0.11,

n 5 30, JMP version 11.1) (Fig. 4). For field samples, the auto-

mated ROI detection software underestimated the number of

bivalve larvae compared to trained technicians because

bivalve larvae were not detected as ROIs by the software (Fig.

4). Based on these results, we conclude that this software has

use in laboratory and hatchery applications but field samples

should be manually cropped until further improvements in

the software are made.

Camera software setting performance

Tests were conducted with the automated image acquisi-

tion system to determine the influence of camera software

settings on the performance of ShellBi. Five different camera

settings (labeled 1-5) were created by altering specific attrib-

utes in the Infinity Analyze software program (Table 4).

Varying the attributes created different background colors in

the images (Fig. 5). All settings and attributes were identical

except for the exposure, gain, light source setting, satura-

tion, brightness, contrast, and hue. Five three-species train-

ing sets composed of 200 images each of C. virginica, I.

recurvum, and R. cuneata were created with images taken

under the five settings using the automated image acquisi-

tion system. A larger training set (labeled “All (1-5)”) was

constructed as a compilation of the five different training

sets (n 5 3000 images).

The six training sets were used to classify 150 images of

“unknown” C. virginica, I. recurvum, and R. cuneata (50

images of each species) which were taken under each of the

five settings, for a total of 30 tests of ShellBi classification

accuracy (5 unknown sets 3 6 training sets 5 30 tests) (Table

5). Classification accuracies for unknown C. virginica, I. recur-

vum, and R. cuneata ranged from 4% to 100% and differed

between species and between camera settings (Table 5). In

general, the highest accuracies (82–100%) occurred when the

settings of the training sets and those of the “unknown” sets

were the same (Table 5, especially overall accuracies reported

in Table 5D). The training set composed of images taken

under all settings (All (1-5)) had classification accuracies

from 85% to 95%. These tests indicate that using the same

settings for training sets and the unknown images yielded

high overall classification accuracies and that different set-

tings may be optimal for different species.

Validation experiments

Two validation experiments (Validation One and Valida-

tion Two) were conducted to assess the accuracy of both the

ShellBi software and trained technicians to classify images of

shells of bivalve larvae which had been captured using the

automated image acquisition system.

Three training sets were constructed with the automated

imaging acquisition system and used to classify shells of

bivalve larvae with ShellBi in both validation experiments.

These training sets were composed of images of eight species

of bivalve larvae found in the Choptank River grouped into

three categories (oysters: C. virginica; mussels: I. recurvum, G.

demissa; clams: M. leucophaeata, M. lateralis, M. mitchelli, R.

cuneata, and T. plebeius). Each category included images of

larvae of different ages. One training set, called COM1000,

had 1000 images per category (Supporting Information Table

S1) and was taken with camera settings 2 (Table 4). A second

Fig. 3. Percent classification accuracy of 9-d-old C. virginica larvae
(upper panel) and concurrent color channel intensity measurements

(bottom panel) taken over a span of 100 d. Each data point for classifi-
cation accuracy was the result of classifying 50 images of 9-d-old C. vir-
ginica using a three species training set (C. virginica, I. recurvum, and R.

cuneata). The color channel intensity values were calculated using five
blanks captured from the automated stage and were compared to the

acceptable range (hatched regions) (see “Procedures” section). Arrows
indicate the time when color channel intensity values dropped below
the acceptable range due to a microscope light bulb malfunction, and

when percent classification accuracies also dropped (from an average of
98–70%).
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training set (COM700) was composed of images using setting

1 (Table 4). Furthermore, COM700 contained fewer total

images of bivalves (700 images per category), fewer images of

M. lateralis and T. plebeius and no images of G. demissa due

to limited availability. However, different ages and species

were all represented as equally as possible (Supporting Infor-

mation Table S1). The third training set (COM1700) was sim-

ply a combination of COM700 and COM1000, so that each

category had 1700 images.

Each validation experiment consisted of 18 separate tests

of the ability of trained technicians and ShellBi to identify

images of C. virginica from those of other bivalves. The 18

tests were each composed of 100 “unknown” images

(n 5 1800 total unknown images). Unknown images for Vali-

dation One were taken under the same settings as the train-

ing set COM1000. Unknown images for Validation Two were

taken under the same settings as COM700. For each experi-

ment, a lab member (who did not undertake classifications)

created 18 folders which contained 100 images of different

ages of C. virginica, I. recurvum, G. demissa, M. leucophaeata,

M. lateralis, M. mitchelli, R. cuneata, and T. plebeius. Care was

taken to vary the number of images of species and ages

(sizes) to simulate differences that might be found in field

samples (e.g., the number of C. virginica in folders ranged

from zero to 44). For Validation Two, there were no G.

demissa images and fewer M. lateralis and T. plebeius because

specimens were not available (Supporting Information Table

S1). The original folders that contained the species name

and age were stored on a password protected secure server.

For the validation experiments, a copy of the 18 folders was

created and all images were renamed so that the identity

and ages of the bivalves would not be known by the trained

technicians who undertook the classifications.

Two trained technicians used the training sets COM1000

(for Validation One) and COM700 (for Validation Two) as

visual keys to assist with identifying images of C. virginica

Fig. 4. The number of shells of bivalve larvae in (A) samples containing laboratory specimens (n 5 33), and (B) field samples (n 5 30) which were
detected by the automated ROI detection software (y-axis) vs. those counted by a trained technician (x-axis). The line indicates a 1 : 1 ratio between

counts of bivalve shells by trained technicians and the automated ROI detection software. Both the laboratory specimens and field samples contained
species of oyster, clam, and mussel larvae.

Table 4. Software configurations of five different settings for the digital camera. The five settings 1–5 were created by changing
attributes in Infinity Analyze software including exposure, gain, gamma, light source, saturation, brightness, contrast and the red and
green hues. Note: the actual light source was kept constant but the setting choice for “Light source” in the software program was
adjusted. The configuration of blue light (1.0), averaging (1), subsampling (1), interval (1 s), and duration (10 s) were held constant
across settings.

Setting

name Exposure Gain Gamma Light source Saturation Brightness Contrast Red Green

1 151.0 10.6 0.82 Fluorescent 1.31 4 4 1.0 1.0

2 151.0 15.2 0.82 Fluorescent 1.31 4 4 1.0 1.0

3 89.1 21.4 0.82 Incandescent 1.00 0 0 1.0 1.0

4 84.5 15.2 0.82 Incandescent 1.31 4 4 1.3 1.3

5 270.8 4.4 1.4 Fluorescent 1.00 5 28 1.0 1.0
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larvae within the 18 folders for each experiment. Misclassifi-

cation was assessed by comparing the images that the tech-

nicians identified as C. virginica with those in the original 18

folders and noting if any C. virginica images were not correct-

ly identified.

In addition, images in each of the 18 folders were classi-

fied using ShellBi and each of the three training sets. Mis-

classifications for ShellBi were calculated using a script

written in MATLAB that calculated true positives (a true pos-

itive was an image of C. virginica that was properly classified

as C. virginica).

Trained technicians were able to classify images of C. vir-

ginica larvae with high accuracies (> 92% on average for

both validation experiments) (Table 6). In contrast, classifica-

tion of images of C. virginica with ShellBi ranged from aver-

ages of 60–94% for both experiments. ShellBi had highest

accuracies (80–93% on average) when training sets contained

images of larvae that were taken under the same settings as

those of the “unknown” images. Accuracies dropped (60–

74% on average) when training sets were used to classify

“unknown images” that had been taken under different set-

tings (Table 6). Based on these tests, we conclude that the

automated image acquisition system can capture images

which can be classified with high accuracy by a trained tech-

nician. In addition, this system can be used with ShellBi to

successfully classify images with high speed and accu-

racies>85% on average for C. virginica larvae, as long as

camera settings used to create training sets and unknown

images correspond. We recommend that trained technicians

check and correct ShellBi classifications for all field samples

processed, thereby ensuring high accuracies while taking

advantage of the rapid image classification by the ShellBi

software.

Discussion

Our goal was to create an automated image acquisition

system and improve ShellBi software to rapidly and accurate-

ly identify and measure larvae of a target bivalve species (C.

virginica). Results indicate that the automated image acquisi-

tion system at 7X magnification was able to image an entire

Sedgewick Rafter slide in 46 min. In addition, the ShellBi

software distinguished C. virginica larvae that were imaged

with the system with high accuracies (> 85% on average)

which could be improved to>92% on average if a trained

technician were to check and correct the computer-based

classifications. The automated image acquisition system

enabled an increase in sample processing time that was up

to 12 h per sample faster than previous efforts where manual

image acquisition was used (Goodwin et al. 2014). This

increase in speed may help offset hourly technician costs

when processing large numbers of samples.

Our research showed that higher accuracies and faster

processing times could be achieved with lower (7X) magnifi-

cations. Previous research with the ShellBi technique was

conducted at magnifications of 50X (Thompson et al. 2012;

Goodwin et al. 2014). The higher accuracy when using lower

magnification may stem from the Support Vector Machine

that the ShellBi software uses to distinguish between species.

It could work better with less information because details in

texture features and color angles are smoothed out at lower

resolutions. Further testing may reveal that magnifications

lower than 7X could be equally accurate, although there

may be a point at which lower magnifications would have

Fig. 5. Images 1–5 contain 4- and 9-d-old larvae of C. virginica and cor-
respond to the camera settings 1–5 (details in Table 4) which were used
for tests reported in Table 5. Setting differences were created by altering

attributes in the camera software Infinity Analyze.
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too little information to distinguish larvae, especially for

small D-stage larvae.

The automated ROI detection performed well for

laboratory-reared samples but poorly for field samples (Fig.

4). This was mostly due to other (non-bivalve) birefringent

material (like some sediment particles) in the samples from

the eutrophic Choptank River (Fig. 6). This material con-

founded the edge detection and ROI extraction process. Per-

formance may be better in oligotrophic waters than in

estuaries because turbid waters of estuaries have more atten-

uation and scatter of light (Guo et al. 2015) and higher sus-

pended sediment concentrations. Further improvements in

the software may enable more accurate ROI detection and

automated cropping. Newer ROI detection methods are

constantly being developed for many applications in the

medical field (Jen and Yu 2015; Molder et al. 2015; Vishru-

tha and Ravishankar 2015). Improvements could help ROI

extraction for ShellBi and should be evaluated in future stud-

ies. However, without any further advances, our automated

ROI detection software could be used “as is” in laboratory or

hatchery conditions to rapidly count for bivalve larvae.

Bachiller et al. (2012) recommended an internal control

mechanism to check the quality of the procedure used for

counting and classifying zooplankton (or bivalve larvae in

this case) given all of the rapid development of imaged-

based methods. We set up an internal control method by

establishing a standard set of 9-d-old C. virginica larvae to be

classified weekly by a previously established training set (Fig.

3). This system proved to be very useful to gauge hardware

consistency with a performance based metric (classification).

In addition, alignment protocols were established to ensure

accurate counts of bivalve larvae.

Camera settings were an important determinant of classi-

fication accuracy for this method. Training sets used to clas-

sify unknown sets imaged under the same camera setting

were more accurate than training sets used to image

unknowns under different settings (Table 5). The training

sets taken under each of the five settings resulted in high

classification accuracies of the unknown groups imaged

under the corresponding five settings, despite differences

between settings (Fig. 5), which suggests that the ShellBi

technique is robust even when camera settings vary. The

tests also indicate that different settings may perform better

for other target species. For example, settings 1 and 3

had>90% accuracies for all three bivalve species tested

while settings 4 and 5 resulted in very high accuracies for R.

cuneata (100%) but<90% accuracy for I. recurvum (82% with

setting 5) or C. virginica (84% with setting 4) (Table 5A–C).

Therefore, we recommend that settings should be tested for

target species so that optimal classification performance can

be achieved.

Thompson et al. (2012) have shown that the ShellBi tech-

nique can be more accurate than PCR and much faster than

traditional light microscopy techniques (Carriker 1996)

although the latter may still be the most accurate way to

identify bivalve larvae to date. The initial set up of ShellBi

requires the establishment of known training sets composed

of larvae that were reared in similar conditions to the larvae

being sampled and identified from the field which can be

labor intensive (Thompson et al. 2012; Goodwin et al. 2014).

Imaging a sample took 46 min using the automated stage

regardless of the quantity of bivalves on a slide. Manually

counting samples on a slide ranged from 0.5 h (with no

bivalves present) up to 13 h with hundreds present (pers.

obs.). Therefore, this technique has the potential to reduce

imaging time (and technician hours) by up to 12 h per sam-

ple. After a specimen library is established, capturing images

with our automated image acquisition system and classifying

Table 5. Classification accuracies for images of shells of (A) C.
virginica, (B) I. recurvum, (C) R. cuneata, and (D) all three
bivalves combined when classified under five different camera
settings (1-5). Training sets (rows) were used to classify
“unknown” sets (columns). Each group was imaged under dif-
ferent camera settings (1-5, described in Table 4). The sixth
training set, “All1-5,” was composed of images captured at all
five settings. Shaded regions indicated accuracies�90%.

Unknown set

Training set 1 2 3 4 5

A) C. virginca 1 92 94 84 88 26

2 84 94 66 66 94

3 88 82 96 96 42

4 4 80 52 84 18

5 4 92 32 16 94

All(1-5) 96 88 96 88 88

B) I. recruvum 1 2 3 4 5

1 90 82 90 72 88

2 70 88 82 80 88

3 84 74 90 74 84

4 98 54 54 94 60

5 98 66 90 44 82

All(1-5) 88 84 86 84 84

C) R. cuneata 1 2 3 4 5

1 100 98 100 2 92

2 48 98 78 0 12

3 90 96 96 4 76

4 0 0 0 100 6

5 40 94 50 38 100

All(1-5) 100 84 100 84 84

D) All species 1 2 3 4 5

1 94 91 91 54 69

2 67 93 75 49 65

3 87 84 94 58 67

4 34 45 35 93 28

5 47 84 57 33 92

All(1-5) 95 85 94 85 85
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Table 6. Classification accuracies for images of shells of C. virginica from two validation experiments. Each validation experiment
contained multiple tests that were designed to compare classification accuracies by trained technicians with the ShellBi classification
software. In each test, 100 images of shells of eight species of bivalve larvae, with varying numbers of C. virginica shells, were classi-
fied. For the tests of the ShellBi software, three different training sets (COM700, COM1000, and COM1700) were used which con-
tained images captured under different microscope settings. The image capture settings for COM1000 matched the settings at which
the “unknown” images in Validation One were captured. The image capture settings for COM700 matched those of the “unknown”
images in Validation Two (corresponding to setting 1 in Table 4 and Fig. 5). The COM1700 training set was composed of images
from both COM700 and COM1000. A “.” indicates that no C. virginica larvae were present. “Cumulative accuracy” was calculated
as the total number of true positive classifications for C. virginica divided by the total number of C. virginica images in all tests com-
bined, multiplied by 100.

Test

Images of

C. virginica

Trained technician ShellBi software

Goodwin Wingate COM700 COM1000 COM1700

A) Validation One

1 41 98 98 46 93 95

2 1 100 100 0 0 100

3 0 . . . . .

4 8 100 38 75 75 75

5 20 100 90 65 95 90

6 0 . . . . .

7 16 100 100 38 94 94

8 19 100 100 74 95 95

9 5 100 80 80 80 80

10 0 . . . . .

11 16 100 100 100 88 100

12 26 88 96 88 96 96

13 7 100 100 100 86 100

14 10 100 100 80 100 90

15 5 100 100 100 80 100

16 0 . . . . .

17 19 100 84 95 95 95

18 7 100 100 100 100 86

Mean 99 92 74 84 93

Std 3 16 28 24 7

Cumulative

accuracy

98 94 73 92 94

B) Validation Two

1 15 100 100 93 60 60

2 44 100 75 84 86 80

3 5 40 80 100 80 100

4 26 100 100 88 96 88

5 5 100 100 100 60 100

6 0 . . . . .

7 15 100 100 100 47 87

8 37 86 100 100 84 89

9 13 100 100 100 77 92

10 15 100 100 93 93 93

11 35 100 100 86 60 74

12 19 100 100 95 47 79

13 4 100 100 100 25 50

14 16 100 100 81 69 94

15 10 100 100 100 20 50

16 4 100 100 100 50 100
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them with ShellBi software is the fastest way to identify and

measure C. virginica in the Choptank River to date.

Comments and recommendation

We recommend that protocols be established for main-

taining classification accuracy over time, which include: (1)

systematic sample preparation, (2) repeated checks of the

alignment of the camera and stage (frequently at first (e.g.,

daily) until a longer period of stability of in alignment is

achieved (e.g., weekly), (3) monitoring of color channel light

intensity, and (4) repeated classification of a standard.

In keeping with previous assessments of this method

(Thompson et al. 2012; Goodwin et al. 2014), we recommend

that unknown larvae be imaged using the same microscope

and camera settings as those for the training sets. We also rec-

ommend that validation studies (similar to those in this man-

uscript) be conducted when using this technique in different

systems and with different species of interest. The validation

experiments showed that C. virginica larvae could be identified

with accuracies >85% on average for the ShellBi software

and >92% on average for the trained technicians. Therefore,

as suggested in Goodwin et al. (2014), the speed of the ShellBi

classification technique could be augmented by the high accu-

racies of a trained technician if a technician checks and cor-

rects the images classified by ShellBi. Because the ShellBi

software sorts images into folders for each category of the

training set, a trained technician can quickly scan the images

to determine if any are out of place.

In addition to imaging bivalve larvae, the automated

image acquisition system has application for rapidly acquir-

ing high-magnification images of other planktonic species.

For example, the system is being tested for imaging cope-

pods (North and Pierson pers. comm.) and the technique

could be used to image pteropods as well (Goodwin, pers.

obs.). Images acquired with this system are compatible with

image-based software programs designed to identify plank-

tonic organisms, which would increase the user base for the

system and its viability as a commercial product. Future

work using this system could advance our understanding of

TABLE 6. Continued

Test

Images of

C. virginica

Trained technician ShellBi software

Goodwin Wingate COM700 COM1000 COM1700

17 25 100 100 92 36 60

18 20 100 100 85 25 70

Mean 96 97 94 60 80

Std 14 7 7 24 17

Cumulative accuracy 97 96 92 65 80

Fig. 6. Images from (A) a field sample and (B) laboratory-reared bivalves which were imaged at 7X magnification. The field sample contained small

birefringent materials or other birefringent organisms like pteropods which made it difficult to automate cropping of ROIs.
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eutrophic and coastal systems around the world by allowing

rapid image acquisition and classification of species that

require magnification for identification.
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